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Congestion-gradient driven transport on complex networks
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We present a study of transport on complex networks with routing based on local information. Particles hop
from one node of the network to another according to a set of routing rules with different degrees of congestion
awareness, ranging from random diffusion to rigid congestion-gradient driven flow. Each node can be either
source or destination for particles and all nodes have the same routing capacity, which are features of ad hoc
wireless networks. It is shown that the transport capacity increases when a small amount of congestion
awareness is present in the routing rules, and that it then decreases as the routing rules become too rigid when
the flow becomes strictly congestion-gradient driven. Therefore, an optimum value of the congestion awareness
exists in the routing rules. It is also shown that, in the limit of a large number of nodes, networks using routing
based on local information jam at any nonzero load. Finally, we study the correlation between congestion at

node level and a betweenness centrality measure.
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I. INTRODUCTION

Network transport has been a topic of intensive research
in recent years [1-9] due to the wide variety of network
systems of practical interest, both natural and human made.
These include [1,10,11] the internet, the worldwide web,
wireless communication networks, networks of biological
processes, social networks, and various distribution networks
that make up the infrastructure of technological society. Re-
search topics include the robustness and efficiency of com-
puter and distribution networks, the spread of disease, and
the study of the interplay between various biological or eco-
nomic processes.

A major result obtained recently [1,10-12] is the realiza-
tion that both natural and man-made networks often display
scale-free topology, i.e., they are characterized by a power-
law distribution of the node degrees. The explanation for this
observation, namely, the connection between form and func-
tionality in networks, remains open. There exist a good num-
ber of stochastic models for network growth and evolution
that lead to scale-free graphs, such as the preferential attach-
ment model of Barabdsi and Albert [13]. However, they are
not directly related to the transport function of the network.
In this paper we explore the possibility of a more direct
connection between topology and transport function in com-
plex networks.

Specifically, we explore the dependence of transport ca-
pacity on the structure of the network, as well as on the
routing rules. We consider a simple transport model, moti-
vated in part by the conditions applicable to a wireless
ad hoc network [14], where any node may be either the
source or the destination of information, and in which all
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nodes have equal routing capacity. We consider a dynamics
in which “particles” (representing information, energy, or
goods) are routed sequentially from node to node along un-
directed network edges until they reach their randomly pre-
assigned destination. The routing choices are made based on
local information only. Particles are added to the network at
a constant rate, with equal probability for every node, and
removed upon reaching their destination. The network load
is quantified by the particle generation rate. Each individual
network is characterized by a critical value of the load [9,15]
beyond which it enters a jammed state, i.e., the average time
to destination diverges and consequently the number of par-
ticles on the network increases indefinitely. For networks
characterized by a given set of structure and routing param-
eters, we define the average jamming fraction as the ratio of
the number of network realizations that end up jamming di-
vided by the total number of realizations. The critical value
of the load at which the average jamming fraction reaches
50% is used to quantify the network transport capacity from
a statistical point of view.

This study is also motivated in part by the work presented
in Refs. [16,17], where the notion of gradient flow networks
is introduced. Gradient networks are directed subnetworks of
an undirected “substrate” network in which each node has an
associated scalar potential and one out-link that points to the
node with the smallest (or largest) potential in its neighbor-
hood, defined as the reunion of itself and its nearest neigh-
bors on the substrate network. Here we use a congestion-
aware routing rule characterized by a parameter that defines
a continuous change from random diffusion to higher de-
grees of congestion awareness. Increasing congestion aware-
ness results in improved network load balancing. The limit-
ing case of congestion-aware routing is that of rigid
congestion-gradient driven flow, when particles are always
routed toward the least congested neighbor. In this case,
transport takes place along a gradient network, but one that
changes dynamically in a manner that is correlated with the
degrees of congestion of the nodes.
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We present results for two network models characterized
by different topologies. The first model is that of random
(also known as Erdés-Rényi) networks, which are character-
ized [18] by the number of nodes and by a constant probabil-
ity p for the connection between any given pair of nodes.
The second model is Barabasi-Albert networks, which are
grown by preferential attachment [13] and, in the limit of
large number of nodes, exhibit a scale-free topology. When
results for the two types of networks are compared in this
paper, the number of nodes and the average degree are the
same. Recently, a detailed analysis of jamming in gradient
networks [19] suggested the existence of a critical value of
the average degree. For values of the average degree below
this critical value, large scale-free networks are somewhat
more prone to jamming than random networks with the same
number of nodes and average degree while the opposite is
true above the critical value.

Our main result is the existence of an optimum value of
the congestion awareness parameter, both for random and for
Barabasi-Albert networks. Below this optimum value, the
transport capacity of the network increases with the degree
of congestion awareness due to the particles being more
likely to avoid waiting in the queues of the busiest nodes.
However, above the optimum value the average transport
capacity decreases with increasing congestion awareness in
spite of the shorter waiting times. The decrease is mainly due
to the formation of transport traps, which prevent particle
flow between parts of the network. Our results also show
that, for a value of the average connectivity below the critical
value suggested in [19], Barabdsi-Albert networks are indeed
more prone to jamming than random networks regardless of
the degree of congestion awareness.

The outline of the paper is as follows. In Sec. II we give
a detailed description of our model and of the criteria that
were used to detect jamming. In Sec. III we present results
for the jamming fraction as a function of load for different
values of the number of nodes and of the congestion aware-
ness parameter. Also in Sec. III we present results for the
critical load as a function of both the number of nodes and
the congestion awareness parameter. In Sec. IV we present
an in-depth analysis of the transport behavior. Section V
summarizes our results and conclusions.

II. MODEL

Our model network consists of a set of N identical nodes
linked together in such a way that they form a connected,
undirected graph characterized by a symmetric adjacency
matrix A, defined by

1 if i and j are connected,
Aij = . (1)
0 otherwise.
The degree d of a node is defined as the number of links
(edges) that connect it to other nodes. We have studied both
the case of Erdés-Rényi [18] (random) networks, character-
ized by a binomial distribution of the node degrees, and the
case of Barabdsi-Albert [13] networks, for which the node
degrees obey a power-law distribution. In the case of a ran-
dom network, the average degree is given [18] by (d)=(N
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—1)p, where p is the probability for a link to exist between
any given pair of nodes. We discard random networks that
turn out to be disconnected. Networks grown according to
the Barabasi-Albert algorithm have an average degree given
by

N—N0+L0/m

(d)(N)=2m N

: ()

where N is the initial number of nodes, Ly=Ny(Ny—1)/2 is
the initial number of links, and m is the number of links
created with every new node. These networks are always
connected. The condition for the average degree to be inde-
pendent of N is Ny=2m+1. All results for Barabasi-Albert
networks presented in this paper have been obtained for val-
ues of m=3 and Ny=7, and consequently (d)=6. To facilitate
comparison, the probability p that characterizes the random
networks has been adjusted to p=6/(N—1). Varying the av-
erage degree does not lead to any qualitative changes in the
results. However, the transport capacity shows an overall in-
crease with increasing average degree, while its maximum at
the optimum value of the congestion awareness parameter
becomes less prominent.

Information packets (or any other entities) transported
along the network are represented by particles that hop from
one node to the next along the graph edges according to rules
that will be discussed in the following paragraph. Each node
has a particle queue, thus being capable of holding more than
one particle at a time. Particles waiting in a queue are pro-
cessed according to the “first-in, first-out” rule. Updating of
the network is done sequentially, so that only one particle is
moving or being created at any given instant. Each time step
consists of a random sequence of updating events, in the
course of which N nodes are randomly selected one at a time
to forward a particle, and a random number of new particles
are added to the network one at a time, with an average rate
of R new particles per time step. All nodes are equally likely
to receive a new particle. Every new particle generated is
assigned a destination, again with equal probability from
among all nodes, and is placed at the end of the queue of its
origin node. Upon reaching their destination, particles are
removed from the network.

The particle hopping dynamics is characterized by the
routing rule used to choose the next location of a particle
sitting on a given node from among its neighbors. If no
record is kept of the possible paths toward a destination, the
routing rule will necessarily be based on local information
only, such as the degrees of the neighboring nodes or any
other parameters that characterize their congestion status. If,
on the other hand, knowledge of some or all possible routes
to the destination is used in making the decision, the rule is
said to be based on global information. Among the routing
rules based on local information we distinguish between ran-
dom diffusion, in which case the next location is chosen with
uniform probability distribution from among the neighbors
of the current node, and congestion-aware rules that take into
account the degrees of congestion of the neighbors. The ex-
treme case of congestion aware routing is that of rigid
congestion-gradient driven flow, when particles are trans-
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FIG. 1. (Color online) Average jamming fraction as a function of load for 8=0 (circles), 0.1 (squares), 0.5 (diamonds), 1 (up triangles),
3 (left triangles), and 10 (down triangles). Results are for random (a), (c), (¢) and Barabdsi-Albert (b), (d), (f) networks with N=30 (a), (b),

100 (c), (d), and 300 (e), (f) nodes.

ported only in the direction of the gradient network gener-
ated by using a congestion parameter as scalar potential [16].
We have chosen a congestion-aware routing rule that uses
local information, namely, the queue lengths of the neighbor-
ing nodes. According to this rule, for a particle currently at
node i the probability of hopping to node j is given by

(a.+1)P
P NAU(q!H) 3)

ji = ’
> Awlge+ D)7P
k=1

where g, is the queue length of node k and S is an adjustable
parameter. Varying 3 from O to « allows a smooth transition
between the case of random diffusion and that of transport
along the gradient network generated by using the queue
length as scalar potential. In practice, a value of B8=10 is
sufficiently high to lead to essentially rigid congestion aware
routing.

For a given realization of the network, simulations were
run for a maximum of 10° time steps. The simulations were
interrupted and jamming declared at any time if either the
length of any queue exceeded the maximum value of 20N, or
the total number of particles n on the network exceeded SON.
In addition, a linear regression for n(r) was attempted every
2 X 10* time steps. Jamming was declared if the result of the
regression was a positive slope with a Pearson correlation
coefficient 7*>0.9 over the last interval of 2X 10* time
steps.

III. RESULTS FOR THE TRANSPORT CAPACITY

In this section we present results for the average jamming
fraction f; computed as a function of the load R as well as for
the average transport capacity, quantified by the critical load
R" at which the jamming fraction reaches 50%. The results
for the jamming fraction were obtained by averaging over
1000 realizations of the network for a given set of parameters
R, B, and N. The critical load is obtained by a linear fit
between two points on the f j(R) curve, one below f;=0.5 and
another one above.

Figure 1 shows plots of the average jamming fraction as a
function of R for both random [Figs. 1(a), 1(c), and 1(e)] and
Barabési-Albert [Figs. 1(b), 1(d), and 1(f)] networks and for
values of N=30, 100, and 300. Each plot has six curves,
corresponding to values of =0, 0.1, 0.5, 1, 3, and 10. Jam-
ming of the random networks is seen to occur at higher val-
ues of the load than in the case of Barabasi-Albert networks
with the same number of nodes. This is true regardless of the
number of nodes and for all routing regimes, which range
from random diffusion (8=0) to essentially deterministic
congestion-aware routing (8=10). The importance of even a
slight degree of congestion awareness is also apparent. In
most plots, the critical load corresponding to 8=0.1 is almost
halfway between the value corresponding to 8=0 and the
highest value. An important empirical result is that, regard-
less of network topology or routing regime, the critical load
decreases as the number of nodes increases. Presumably, this
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FIG. 2. (Color online) Critical load of the network as a function
of the congestion awareness parameter for N=30 (circles), 100
(squares), and 300 (diamonds). Results are for random (a) and
Barabasi-Albert (b) networks with {(d)=6.

is due to the fact that the average length of the walk between
two nodes (L) increases slightly faster than N2. This result is
even more significant in view of the fact that the most mean-
ingful quantity is, arguably, the average number of new par-
ticles per node and time step R/N, which does not depend on
the number of nodes as the network size is varied. In the
limit of large number of nodes, this quantity approaches
zero. The significance of this is that large transport networks
with routing based on local information only will jam if each
node injects the quantity to be transported at any nonzero
average rate.

Perhaps the most important result is the existence of an
optimum value of the congestion awareness parameter f3.
This can be seen more clearly in Figs. 2(a) and 2(b), where
the critical load R” is plotted against 8 for random and for
Barabasi-Albert networks, respectively. Regardless of net-
work topology or number of nodes, the critical load increases
as the congestion awareness parameter increases until it
reaches a maximum. For higher values of S, the critical load
decreases monotonically and seems to approach a finite
value as B— 0. This seemingly counterintuitive result is ex-
plained in Sec. IV, where we show that it is due to the onset
of transport traps. The optimum value of the congestion
awareness parameter increases with network size, starting
from about 0.5 for very small (N=30) networks, and appears
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to approach an asymptotic value of about 1 for networks
with a few hundred nodes. To facilitate comparison between
random and Barabdsi-Albert networks, we present here re-
sults for (d)=6. However, for reasons that will be explained
in Sec. IV, the maximum of the critical load is more pro-
nounced at lower average degrees. We also note that, as the
number of nodes on the network increases, the maximum of
the transport capacity becomes less prominent but does not
disappear.

IV. DETAILED ANALYSIS

A. Betweenness definition and calculation

We begin this section by defining a measure that charac-
terizes the nodes of the network from a purely topological
point of view. Various definitions of centrality measures have
been proposed, each having its scope of applications
[3,9,20-24]. Of these, betweenness centrality measures are
most appropriate for characterizing transport on networks be-
cause they are proportional to the average number of times a
path passes through a given node. The differences between
the various betweenness definitions are in the types of paths
that are considered and the way the number of passes is
counted. The measure that we use in this paper is a slightly
modified version of the betweenness centrality defined by
Guimera et al. [9]. Random walks along the network are
considered for particles with a given source node s and des-
tination node 7. The betweenness b?' of a node i with respect
to s and ¢ is defined as the average number of times a random
walk between s and r passes through i. Finally, the global
betweenness of node i is defined as the average over all s and
t of b'.

In principle, a calculation of the betweenness can be done
by starting from the transition probability matrix P, whose
elements P;; give the probability for a particle to arrive at
node i coming from node j. However, the computation of P
is straightforward only in the case of random diffusion. Nev-
ertheless, the results presented in the remainder of this sec-
tion show that, even in the case of congestion aware routing,
there exists a strong correlation between the random walk
betweenness of a node computed in the case of random dif-
fusion and the average number of particles it receives per
time step. Assuming at first that particles are never removed
from the network, we have

)

P, ==, 4
4 4)

where d; is the degree of node j. For particles with destina-
tion node ¢, we can account for their removal once they reach
their destination by replacing all elements in column ¢ by 0.
The matrix thus obtained will be denoted by P'. It is easy to
verify that (P')};, where (P')" is the nth power of P', gives the
probability of arrival at node i/ coming from node j in n steps
for a particle with destination ¢. Then the betweenness of
node i with respect to a source node s and a destination node
t is defined as
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FIG. 3. (Color online) Correla-

tion plots of the average particle
flux (left) and average queue
length (right) versus betweenness
for random networks. The values
of Bare 0 (a), (b), 0.5 (c), (d), and
10 (e), (f). Lower (black) sets of
dots are for R=0.1 (a), (b) and R
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by'= 2 (P, (5)
n=0

where (P')? is taken to be the unit matrix 1. Equation (5) can
be rewritten as

b= (I-P);. (6)
Finally, the global betweenness of node i is given by
L X
b= ﬁE (1-pP";. (7)

s,t=1

If this quantity is multiplied by the rate at which new par-
ticles are added to the network R, we obtain the average total
number of particles (new or from other nodes) reaching node
i in the course of a time step.

In its most straightforward form, the algorithm requires N
matrix inversions, the number of flops thus being O(N*).
However, since the transformation from (/- P’) to (I —P”) is
a rank-2 perturbation of (I—P’), one can use the Sherman-
Morrison-Woodbury formula [25] to compute N—1 of the
inverses at a much lower cost once a first inverse has been
computed. Specifically, the computation can be done as fol-
lows. First, compute Q=(/—-P’)~! for a given ¢, for example
t=1. Then for every t' #t we can write

’ e*
P =P'+[P,|- P][—}

t/

(8)

where P., denotes the s column of matrix P and e: the s row
of the unit matrix. The vertical and horizontal bars within the
two bracketed expressions in (8) are column and row delim-
iters, respectively. By an application of the Sherman-
Morrison-Woodbury formula to (7 —p')! using (8), and after
a little bit of algebra we find

betweenness

(- Pt,)_l =0+ [QP:t|et’ - 0.1

1- (QP)zt Qtt’ -l &:|
g |:_ (QP)t’t Ql’l’ ] |:Qt’: ‘ (9)

Here ¢, is the t’ column of the unit matrix, while Q.; and Q.
are the s column and row, respectively, of matrix Q. Note
that, once Q and the product QP., have been computed, all
coefficients in (9) are known for every ¢'. By an inspection
of (9) we find that the total number of flops necessary for the
computation of the N inverses becomes O(5N%).

B. Correlations with congestion parameters

Next we investigate the correlation of the betweenness
measure b with two parameters that can be used to charac-
terize the congestion status of a node. Specifically, we look at
the correlation with the time averages of the queue length ¢
and particle flux w, which is defined as the number of par-
ticles received by the node in a time step. The results pre-
sented in this subsection pertain only to cases of steady state
transport, when the network does not jam. Jamming can be
characterized in terms of the particle flux as a situation in
which its average exceeds the maximum value of (w)=1 for
at least one node (all nodes can process on average at most
one particle per time step). In addition, since the results are
similar regardless of the number of nodes, we only show
results for random and Barabdsi-Albert networks with N
=30 nodes.

Figures 3 and 4 show correlation plots of the average
particle flux and average queue length against node between-
ness in the case of random and Barabasi-Albert networks,
respectively, for values of 8=0, 0.5, and 10. The average
particle flux is plotted in Figs. 3(a), 3(c), and 3(e) and 4(a),
4(c), and 4(e), while Figs. 3(b), 3(d), and 3(f) and 4(b), 4(d),
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and 4(f) show the average queue length. The averages are
computed over 10° time steps. Each plot contains points cor-
responding to a value of R that is well below R" (lower set of
dots, colored black online) and to a value close to R* (upper
set of dots, colored red online). Each set contains 3000 dots,
corresponding to 100 network realizations with a given set of
parameters.

As one would expect based on the way the betweenness
measure is defined, it provides an essentially exact descrip-
tion of the statistics of the particle transport in the case of
random diffusion (8=0). There is a very strong linear corre-
lation between the average particle flux through a node and
its betweenness, regardless of the value of the load R. If the
points corresponding to a given load are fitted with a straight
line the value of the slope is, to within the statistical uncer-
tainty, equal to R [straight lines in Figs. 3(a) and 4(a)]. We
thus see that the probability for a network to jam at a given
load under a random diffusion routing regime is the same as
the probability of having at least one node with betweenness
higher than the inverse of the load. This also explains the
uneven jamming that characterizes networks when the ran-
dom diffusion routing rule is used, since only the nodes for
which bR>1 are jamming. As for the average queue length,
its correlation with the betweenness measure is approxi-
mately linear only when the network load is low, well below
its critical value R*. At higher loads, the correlation is still
strong but nonlinear. This is due to the fact that the func-
tional dependence of the average queue length on the aver-
age particle flux is nonlinear. One can show that, in the case
of random diffusion, the number of particles in a queue is
distributed according to an exponential distribution law
[9,26] given by

plg) = (1= (w){w)?,

where p(g) is the probability of having g particles in the
queue of a node characterized by an average particle flux

(10)

(w). From (10) it follows that the average queue length is
related to the average particle flux by [9,26]

W)
T l=(w)’

(@) (11)

The last formula, with (w)=bR, has been used to generate
the curves in Figs. 3(b) and 4(b). As can be seen, these
curves provide an excellent fit for the data points obtained
from simulations.

Things are more complicated in the case of congestion-
aware routing. Neither the average particle flux nor the
average queue length correlate linearly with the random
walk betweenness except at very low loads. The correla-
tions also become weaker as the load increases. The
strength of the correlation is nevertheless surprising,
especially in the case of the average flux, and the plots
provide some useful insight into the behavior of the network
transport. The most meaningful comparison is between
the b—(w) correlation plots [Figs. 3(a), 3(c), and 3(e) and
4(a), 4(c), and 4(e)]. By comparing these figures we see
that the way a congestion-aware routing rule is able to cope
with higher loads than random diffusion is by diverting
part of the traffic toward lower betweenness nodes. High
betweenness nodes that would otherwise have exceeded
the maximum particle flux now are kept just below (w)=1,
while lower betweenness nodes experience higher traffic.
The rigid straight-line correlation between node between-
ness and average particle flux is bent, which also explains
why networks with a congestion-aware routing rule jam
more uniformly. The load balancing becomes more pro-
nounced as the load increases. At a given load, the balancing
is stronger for higher values of the congestion awareness
parameter.

A simple explanation for the decrease in the average
transport capacity of the network at large S is that the routing
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FIG. 5. (Color online) Histograms of the destination finding
times at S=1 (a) and 10 (b) for Barabdasi-Albert networks with N
=30 nodes at R=0.55.

rule “overshoots” its goal of balancing the network load.
Since large values of 8 lead to more rigorous load balancing,
the particle flux through the high betweenness nodes is lower
than in the case of optimum . But high betweenness nodes
tend to have high degrees as well and are in general better
positioned to route a particle between two weakly connected
parts of the network. This leads to situations where some
particles wander about for longer periods of time before find-
ing their destination and consequently to increased likelihood
for the average particle flux through some nodes to exceed
its maximum allowable value. To verify this, we looked at
the statistics of the destination finding times.

In Fig. 5 we present histograms of the destination finding
times at S=1 and B=10 for Barabdasi-Albert networks with
N=30 nodes. The network load is R=0.55 (close to R" for
both values of B) and the statistics is based on 100 nonjam-
ming realizations. It is apparent from Fig. 5 that, even in the
case of steady state transport, there are particles with much
longer destination finding times at 8=10 than at S=1. This is
an indication that a routing rule too rigidly based on conges-
tion awareness may fail to achieve its goal of minimizing the
finding times even in the case of jamming networks. The
average time a particle sits in a queue is shorter, but this may
be compensated by the lengthening experienced by the par-
ticle routes. However, the generalization of this explanation
to situations of unsteady transport is not straightforward and,
as we will see in the next subsection, it does not provide a
complete picture of the jamming mechanisms.

C. Jamming scenarios

A more detailed analysis of jamming reveals that the main
cause of the decrease in transport capacity at large values of
B is the onset of transport traps which destroy the connec-
tivity of the network. Consequently, particles generated on
one connected subnetwork whose destination happens to be
on another one will not be able to find their destination. A
network may develop one or more traps, each containing a
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FIG. 6. (Color online) A random network with N=30 and (d)
=6. Nodes 1 and 5 form a “trap” as described in Sec. IV C.

small number of nodes, while the majority of the nodes re-
main part of a “dynamic giant component.” There are also
cases when, due to statistical fluctuations, the subnetworks
are not disjoint all the time. However, jamming occurs if the
time intervals when they can exchange particles are on aver-
age too short to allow all particles to find their destination.

We analyzed the behavior of 50 random networks with
N=30 nodes which are jamming at a load R=0.65. Of these,
46 networks exhibited between one and three simple two-
node traps involving an “outer” node with degree 1 linked to
another “inner” node with a higher degree. The way such a
structure leads to trapping is explained in detail in the fol-
lowing paragraph. Five of the 46 networks also had more
complicated traps, consisting of a node of degree 2 linked to
two higher degree nodes. Finally, one network had a single
trap consisting of two nodes of degree 1 connected to a hub,
which works basically the same way as the simple trap men-
tioned above, and three networks were jamming uniformly,
without the formation of traps.

A random network with N=30 and {d)=6 which exhibits
a simple two-node trap is shown in Fig. 6. The trap is formed
by nodes 1 and 5. Even from the beginning, when the queues
are short, node 5 receives less traffic than any other nodes,
thus having a shorter queue on average. However, this does
not help node 1 since it will be more likely to send its par-
ticles toward node 5 only to receive them back. This “ping-
pong effect” leads to a longer than average queue at node 1.
When the queue length of node 1 is larger than the network
average, it will be extremely unlikely to receive particles
from the rest of the network until its queue length decreases.
Thus we have periods of time when the transport between
the two parts of the network is interrupted. As long as the
queue lengths are small and their fluctuations large compared
to their averages, these periods are finite. But as particles
start accumulating, the trap becomes essentially permanent.
The outer node consistently maintains a shorter queue than
any node in the dynamic giant component of the network,
while the inner node maintains a longer queue. And since the
routing rule (almost) rigorously points toward the neighbor
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FIG. 7. (Color online) Plot of the fraction of the number of
particles g;/n sitting in the queue of node i versus time for the
network in Fig. 6. Each curve has a different color and corresponds
to a different queue.

with the shortest queue, this effectively blocks the exchange
of particles between the two nodes and the rest of the net-
work since the nodes in the main part of the network to
which the inner one is connected will always find other
neighbors with shorter queues and send the particles their
way. On both sides, particles that cannot find their destina-
tion keep accumulating. This eventually increases the desti-
nation finding time even for particles that can find their des-
tination, due to the longer waiting periods in queues.

The scenario is illustrated in Figs. 7 and 8, which both
pertain to the network in Fig. 6. Figure 7 shows plots of the
fractions of the total number of particles sitting in the queues
of the various nodes ¢;/n as functions of time. As can be
seen, the queue length of node 5 is consistently shorter than
the queue lengths of all other nodes, while the queue length
of node 1 is consistently longer. Plots of the number of par-
ticles having a given node as destination s; versus time are

250

|
0 2000 4000 6000 8000 10000 12000 14000
time steps

FIG. 8. (Color online) Plot of the number of particles on the
network s; that have a given node i as destination versus time for
the network in Fig. 6. Each curve has a different color and corre-
sponds to a different destination node.
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shown in Fig. 8. Here we see that as soon as the number of
particles on the network increases sufficiently to make the
ordering of the queue lengths stable with respect to fluctua-
tions, the number of particles seeking nodes 1 and 5 starts to
increase sharply. The number of particles with other destina-
tions increases at a much slower rate since fewer such par-
ticles (only those created on nodes 1 or 5) are prevented from
reaching their destination. In addition, particles with both
origin and destination on the main network experience a
lengthening of the destination finding times due to particles
seeking nodes 1 or 5 clogging the queues.

As for the five three-node traps, the middle node with
degree 2 has a queue shorter than the network average, while
both higher degree nodes have longer than average queues.
Thus, transport to and from the rest of the network is cut at
both ends. Four of these five traps can actually be explained
in terms of simple traps, since one of the high degree nodes
has a long queue due to being part of a separate two-node
trap. This effectively cuts one of the links of the node with
degree 2, leading to the formation of another trap through the
two-node mechanism mentioned above.

One can imagine other types of structures prone to trap
formation, but they are much less likely to occur and were
not observed in our simulations. These include traps consist-
ing of more than two nodes of degree 1 connected to the
same hub (more likely to occur at lower values of the aver-
age degree), as well as traps involving nodes of degrees
higher than 1 (more likely to occur at higher average degree).
Examples of the latter include a triangle connected only at
one vertex with the rest of the network, a chain between two
high degree nodes, or a node of degree 3 connected to nodes
of much higher degree.

The mechanism of trap formation is different in the case
of Barabdsi-Albert networks. These networks generally con-
sist of three categories of nodes. The first large category
includes the hubs, which have high degrees and are very
likely to be connected to each other and to lower degree
nodes. The second large category includes low degree nodes
connected to the hubs but not to each other. Finally, a third
smaller category consists of nodes of low or intermediate
degree connected to the hubs and to each other. Even with
load balancing, the hubs will have longer queues than the
nodes with low or intermediate degree. As long as the latter
are not connected to each other, particles will be passed back
and forth between the two parts of the network: hubs will
(almost) always send a particle to one of their low degree
neighbors, while these will send it to one of the hubs to
which they are connected, not necessarily the one where the
particle came from. Thus, transport between any two nodes
is possible and the average queues of the various nodes,
while not equal, remain relatively close to each other. On the
other hand, if two or more low or average degree nodes are
connected to each other, from the early stages of jamming
they will tend to exchange particles between themselves in-
stead of sending them to the hubs. Thus, their queues will be
on average longer than those of the other low or intermediate
degree nodes. As particles accumulate on the network and
the relative amplitude of the queue length fluctuations
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FIG. 9. (Color online) A Barabasi-Albert network with N=30
and (d)=6. Nodes 11 and 20 form a “trap” as described in Sec.
IV C.

decreases, the network may become locked in a state in
which nodes from the third category only exchange particles
between themselves while never receiving particles from the
hubs. Consequently, both inside and outside the trap, par-
ticles that cannot find their destination keep accumulating,
which also slows down the particles that can find their des-
tination. An analysis of 50 Barabdsi-Albert networks with
N=30 nodes jamming at R=0.65 shows that 16 of them are
jamming due to trap formation, while 34 are jamming uni-
formly. A network with N=30 and {d)=6 exhibiting a two-
node trap is shown in Fig. 9. Here the trap is formed by
nodes 11 and 20. The jamming is illustrated in Fig. 10, which
shows plots of the fractions of the total number of particles
sitting in the queues of the various nodes ¢;/n as functions of
time. The time dependence of the number of particles having
a given node as destination s; is very similar to the one in
Fig. 8 and is not shown.
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FIG. 10. (Color online) Plot of the fraction of the number of
particles g;/n sitting in the queue of node i versus time for the
network in Fig. 9. Each curve has a different color and corresponds
to a different queue.
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FIG. 11. (Color online) Plot of the average rate of growth of ¢;
as a function of B for the networks in Figs. 6 (a) and 7 (b).

Now the main reason for the existence of an optimum
value of B becomes apparent. By retaining some stochastic-
ity in the routing rule, the onset of the transport traps can be
avoided since particles are sufficiently likely to be sent even
towards neighbors that have longer queues than others. This
is similar to the way simulated annealing or Metropolis
Monte Carlo algorithms avoid trapping of the system in
metastable states [27,28]. The trapping mechanisms de-
scribed above also explain why, especially in the case of
random networks, the maximum or the transport capacity at
optimum [ becomes less prominent as the average degree
increases since networks become less likely to contain low
degree nodes, which are essential for the formation of traps.

Finally, we studied the dependence on the congestion
awareness parameter of the average rates of increase of the
queue lengths ¢; and number of particles seeking a given
node s; for 50 random and 50 Barabdsi-Albert networks with
N=30 which jam at any value of R. The averages were taken
over 100 transport sessions on each network. We found no
evidence of change in the trapping mechanism for a given
network as the congestion awareness parameter is varied.
Figure 11 shows plots of (Ag;/At) versus B for the networks
in Figs. 6 (a) and 7 (b). In the case of the random network,
one can see that at low values of S there are other nodes
whose queues increase much faster that of node 1. These are
the nodes with the highest random walk betweenness on the
network. However, at a value of B~ 1, which is slightly
higher than the critical value, the rate of increase of the
queue of node 1 becomes the highest and remains like that as
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FIG. 12. (Color online) Plot of the average rate of growth of s;
as a function of B for the networks in Figs. 6 (a) and 7 (b).

B increases. Node 5 experiences the lowest rate of increase
of the queue length regardless of the value of S, as expected
since it is the only node of degree 1 on the network. In the
case of the Barabasi-Albert network, the two nodes that form
the trap have intermediate rates of increase of the queue
length regardless of the value of 8. The plots of (As;/Ar)
versus [ presented in Fig. 12 show that, as soon as the criti-
cal value of B is exceeded, the nodes that form the traps
become more difficult to find than all other nodes and the
discrepancy between the rates of increase of the number of
particles seeking nodes inside and outside the trap increases
significantly with B. Finally, we note that in Fig. 12(a) the
rate of increase (Ass/Ar) for the outer node is the highest
even below the critical value of 8. However, this is simply
due to its low betweenness and not to the existence of a trap.

Depending on the topology of the network around the
critical nodes, traps can occur virtually from the beginning,
without the network ever reaching a steady transport state, or
they can be triggered by a large statistical fluctuation at a
later time. Indeed, the possibility of jamming after an initial
period of steady transport is a characteristic of networks op-
erating under (almost) deterministic congestion-aware rout-
ing. In all other cases, networks either reach a steady state
that lasts indefinitely, or start jamming from the beginning.
The connection between jamming start time and the details
of network structure seems to be extremely complicated.
Furthermore, since simulations can only be run for finite pe-
riods of time, we cannot identify all networks that jam due to
the formation of transport traps. However, from the point of
view of rigid congestion-aware routing it seems safe to dis-
tinguish between two types of networks: those that are
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“structurally fit” for it and able to bear at least as high loads
as at intermediate degrees of congestion awareness, and
those that are prone to the formation of traps (due to the
presence of structural features like those discussed earlier in
this section) and end up jamming under lower loads than in
the case of a less rigid routing.

V. CONCLUSIONS

We use a simple model to study the behavior of network
transport in the case of routing based on local information
with various degrees of congestion awareness, ranging from
random diffusion to the extreme case of rigid congestion-
gradient driven flow. The degree of congestion awareness is
controlled by a single scalar parameter. The average trans-
port capacity for networks with a given set of topology and
transport parameters is characterized by the critical load un-
der which half of these networks are jamming. At the aver-
age connectivity we have used, random networks are more
robust against jamming than Barabdsi-Albert networks with
the same number of nodes and average degree. However, in
light of the results presented in [19], it is possible that
Barabési-Albert (and in general scale-free) networks become
more robust once a certain critical value of the average con-
nectivity is exceeded. Regardless of topology, the critical
load decreases as the number of nodes increases, which
means that the critical load per node approaches zero in the
limit of large number of nodes. Consequently, jamming
seems to be unavoidable in sufficiently large networks with
transport based on local information only.

A somewhat counterintuitive result is the existence of an
optimum value of the congestion awareness parameter. Be-
low this value, transport capacity increases with the degree
of congestion awareness, and reaches its maximum at the
optimum value. The increase is due to the fact that particles
are more likely to avoid sitting in the queues of the busiest
nodes (“hubs”) for extended periods of time. A high degree
of congestion awareness does, however, have some un-
wanted effects which eventually lead to a decrease in trans-
port capacity. We show that this decrease is mainly due to the
occurrence of transport traps, which prevent particle ex-
change between parts of the network. In the case of the ran-
dom networks, these traps are formed by sets of low degree
nodes (“stubs”) connected to nodes with higher degrees. The
optimum value of the congestion awareness parameter arises
from the interplay between the effects that tend to increase
the transport capacity and those that tend to decrease it. The
overall lower robustness of the Barabdsi-Albert networks is
due to the fact that a power-law (or emergent power-law)
distribution of the node degrees allows both more high de-
gree nodes (which are responsible for jamming in the case of
low congestion awareness), and more low degree nodes (re-
sponsible for jamming in the case of high congestion aware-
ness) compared to the binomial distribution that character-
izes the random networks.

The existence of an optimum value of the congestion
awareness parameter can be viewed as a result of stochastic
interactions, similar to the way that simulated annealing and
Metropolis Monte Carlo methods optimize the performance
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of computer simulations. In these algorithms, stochastic dy-
namics allows the system to escape metastable states,
whereas in our transport simulations it allows particles to
escape traps.

We have also shown that a betweenness centrality mea-
sure similar to the one defined in [9] provides an essentially
exact description of the statistics of network transport in the
case of random diffusion. In addition, we describe an algo-
rithm for the fast computation of this betweenness measure.
Furthermore, the betweenness proves to be a useful tool in
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the analysis of network transport under congestion-aware
routing as well.
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